
Dynamic Problems and Nature Inspired Meta-heuristics

Tim Hendtlass and Irene Moser
Centre for Information Technology Research

School of Information and Communication Technologies
Swinburne University, VIC 3001

{thendtlass, imoser}@ict.swin.edu.au

Marcus Randall
School of Information Technology

Bond University, QLD 4229
Australia

E-mail: mrandall@bond.edu.au

Abstract: Biological systems are, by their very nature,
adaptive. However, the meta-heuristic search algorithms
inspired by them have mainly been applied to static prob-
lems (i.e., problems that do not change while they are being
solved). Recently, a greater body of work has been com-
pleted on the newer meta-heuristics, particularly ant colony
optimisation, particle swarm optimisation and extremal
optimisation. This survey paper examines representative
works and methodologies of these techniques on this class
of problems. Beyond this we outline the limitations of
these methods.

Keywords: evolutionary and adaptive dynamics, ant colony
optimisation, particle swarm optimisation, extremal optimi-
sation.

1 Introduction

Many industrial optimisation problems are solved in en-
vironments that undergo continual change. These problems
are referred to as dynamic optimisation problems and are
characterised by an initial problem definition and a series
of “events” that change it over time. An event defines some
change either to the data of the problem or its structural def-
inition while the problem is being solved. In comparison to
static optimisation problems, dynamic optimisation prob-
lems often lack well defined objective functions, test data
sets, criteria for comparing solutions and standard formula-
tions [4, 15].

Evolutionary algorithms are those based on natural and
biological systems. A very common example of these are
genetic algorithms (GAs). For this class of algorithms,
extensive modifications to accommodate dynamic optimi-
sation problems have been made. A survey of these ap-
proaches is given by Yaochu and Branke [35]. However,
for another group of evolutionary algorithms, Ant Colony
Optimisation (ACO) [14], Particle Swarm Optimisation

(PSO) [16] and Extremal Optimisation (EO) [8], suitable
modifications and applications to these difficult problems
are only starting to appear.

This paper presents a survey of representative ACO,
PSO and EO works and methodologies for dynamic prob-
lems. Sections 2, 3, 4 describe how each of the identified
meta-heuristics has been used to solve dynamic optimisa-
tion problems. Section 5 contains the comment on the limi-
tations of the techniques.

2 Ant Colony Optimisation

ACO is a set of constructive population techniques. An
overview of ACO can be found in Dorigo and Di Caro [14].
As a maturing meta-heuristic, applications to dynamic prob-
lems have started to emerge. Apart from the benchmark
problem set (including the travelling salesman problem
(TSP), quadratic assignment problem (QAP) and knapsack
problem), industrial oriented research has been mainly in
telecommunications [14] and manufacturing. We also dis-
cuss more generic frameworks for ACO and dynamic prob-
lems.

2.1 Benchmark Problems

Benchmark combinatorial optimisation problems, such
as TSP, QAP and the knapsack problem, are usually pre-
sented as static problems. However, as there has been re-
cent interest in adapting ACO to solve dynamic problems,
some common problems have been changed so they have
a dynamic (temporal) component. In particular, this has
been done for the TSP. There are two broad ways in which
a standard TSP can be transformed into a dynamic problem.
These are dynamically varying the distances between cities
and adding/dropping cities from the problem while it is be-
ing solved between separate runs of the ant colony solver.

Eyckelhof and Snoek [17] solve problems in which the
distances between cities vary dynamically. They adapt the
basic Ant System algorithm to avoid the twin problems
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of a) certain edges becoming relatively unused because
of low pheromone values and b) some edges having too
much pheromone and hence dominating the decision pro-
cess. This is achieved by effectively limiting the lower and
upper bounds on pheromone values, implicitly implement-
ing a form of MAX −MIN Ant System. Using two
small test data sets of 25 and 100 cities, they found that
it is able to quickly adapt to the changing environment and
is an effective solution method for these problems.

In contrast, Angus and Hendtlass [1] solve a problem
in which cities are added or dropped rather than dynami-
cally changing distances. The addition and removal of cities
occurs in separate runs of the solver. This work showed
that the ant algorithm could adapt quickly to the new prob-
lem scenario. Upon the removal or addition of a city, the
pheromone levels on the problem edges were normalised.

2.2 Telecommunication Problems

Ant based algorithms have been used in the routing of
telephone calls as well as to regulate network packet flow.

Schoonderwoerd, Holland, Bruten and Rothcrantz [31]
use a highly abstracted ant based system for solving prob-
lems involving the routing of telephone calls between ori-
gin and destination nodes using a switched network. The
networks they study are not capable of connecting all calls
at a given time so the objective is to minimise the num-
ber of lost calls. In their ant based solution, ants operate
independently of the calls. Each ant travels between an ori-
gin and a random destination node based on a function of
pheromone, distance and node congestion. Calls are routed
according the pheromone level on each neighbouring node.
The link with the maximum pheromone is always chosen.
This approach compares favourably with existing mobile
agent methods of British Telecom [31].

Di Caro and Dorigo [13] have designed an ant colony
system (ACS) to build forwarding tables for packet routing
problems (such as those that occur on the Internet). The
authors have shown that their system (called AntNet) com-
pares favourably with existing routing algorithms. Zhang,
Khun and Fromherz [36] have made substantial adaptations
to the system to accommodate ad-hoc wireless sensor net-
works.

Similar work to AntNet has also been performed by
White, Pagurek and Oppacher [34] except that separate ant
colonies are used to determine the routes, allocate traffic to
the routes and deallocate routes. Preliminary work has also
been carried out on routing with fibre optic cables [33].

2.3 Industrial Manufacturing

Some of the most common problems in industrial manu-
facturing are job shop scheduling and machine sequencing.

Cicirello and Smith [12] solve a dynamic problem of
routing jobs on a shop floor using an algorithm based on
ACO principles. In their approach, each job is assigned to
an ant that makes the routing decisions through the various
machines on the shop floor. Pheromone is deposited on the
route that each ant/job takes. This was shown to effectively
balance the workload of the factory machines.

Aydin and Öztemel [2] describe a system for solving
dynamic job shop sequencing problems using intelligent
agents. In this paper, an agent does not solve a complete
problem, but simply reacts to the requests from a simu-
lated environment and develops an appropriate job priority
list. There are two stages; a learning stage and a produc-
tion stage. In the learning stage, the simulated environment
gives the agent feedback about the performance which it
then uses as a part of a reinforcment learning program. Ar-
rival times and processing durations on particular machines
for particular jobs are given by an exponential distribution.
However, machine breakdowns and other events (such as
rush orders) are not dealt with by this approach.

2.4 General Approaches

There have only been limited attempts to modify stan-
dard ACO algorithms to process dynamic problems more
seemlessly.

Population ACO (P-ACO) [19, 20] is an ACO strategy
that is capable of processing dynamic optimisation prob-
lems. It achieves this by using a different pheromone up-
dating strategy. Only a set of elite solutions are used as part
of the pheromone updating rules. At each iteration, one so-
lution leaves the population and a new one (from the cur-
rent iteration) enters. The candidate solution to be removed
can be selected on age, quality, a probability function or a
combination of these factors. The authors argue that this ar-
rangement lends itself to dynamic optimisation, as extensive
adjustments, due to the problem change, need not be made
to the pheromone matrix. Instead, a solution modified to
suit the new problem is used to compute the new pheromone
information. This modification process works for full solu-
tions only and is tailored for particular problems. Exper-
imental work on the dynamic TSP and QAP showed that
P-ACO could adapt to small changes in the problem better
than restarting the entire algorithm.

A set of generic modifications have been proposed to
allow ACO to solve dynamic optimisation problems [30].
This framework defines categories of events that change the
problem definition (i.e., data and/or structure) while ACO
solves it. Rather than discarding solutions and restarting
the construction process, if an event occurs, the process of
deconstruction begins. Deconstruction removes the compo-
nents from a solution that make it infeasible to the changed
problem. Results for a dynamic version of the multidimen-
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sional knapsack problem showed that the modified ACO
could quickly adapt to the problem changes. Further work
on the dynamic aircraft landing problem [18] (using a real-
time simulator) indicates that the approach is capable of
producing good schedules in a timely fashion.

3 Particle Swarm Optimisation

The classical particle swarm optimisation (PSO) algo-
rithm [25] was inspired by the swarming behaviour of birds
and fish. While the metaphor is a dynamic one, there have
been few applications to these problems. PSO tries to mimic
this behaviour and apply it to a number of particles moving
through problem space. This movement occurs under the
influence of a number of factors, some of which can be con-
sidered personal in that no other particle is involved while
others are social and involve more than one particle.

When the velocity of each particle is updated, the particle
keeps a part of its velocity at the last iteration. The fraction
that is kept, referred to as the momentum of the particle,
prevents any drastic velocity changes and may permit the
particle to pass through a local optimum. This is clearly a
personal factor. A further personal influence is a tendency to
return to the best position yet found by this particle (pbest).

Apart from the personal there are also social influences.
The particle is attracted towards the best position currently
experienced by other particles that form its local neighbour-
hood (lbest) and/or towards the best position found by any
particle in the swarm so far (gbest).

Each particle updates its velocity simultaneously using
some combination of personal and social influences. Mo-
mentum is always used and generally two others, at least
one of which must be social. Using pbest and lbest encour-
ages the parallel exploration of multiple local optima while
using gbest and lbest encourages the whole swarm to con-
verge on the best optimum encountered. Using pbest and
gbest is also a viable option as experience shows that the
number of particles that constitute a local neighbourhood is
not critical. The interplay of the chosen influences produces
an efficient search mechanism.

3.1 Adapting PSO for Dynamic Problems

There are a number of non-biological adaptations that
need to be made to the classical swarm algorithm so that it
suits dynamic problems. These can be summarised as: pre-
venting the complete convergence of the swarm, keeping
personal and social reference points up to date and main-
taining or generating explorer particles far from any current
point of convergence. Approaches that achieve at least one
of these aims will be considered.

Preventing Total Convergence. Social influences be-
tween particles, attractions to gbest and lbest, will tend to

result in total convergence. To change this it is necessary
to introduce some counter influence. One method [6] is to
give at least some particles a charge so that, by analogy with
electrostatics, two particles experience a repulsive force as
they approach and the swarm would then not be able to fully
converge. The particles would in time reach some (possibly
dynamic) equilibrium between the convergence and diver-
gence effects, but this does not mean that they are actively
exploring. A second method [9] is to divide the swarm into
sub-swarms so that not all particles converge on the same
point. A particle and its closest neighbours may form a sub-
swarm if the variance in the fitness of the particles is less
than some threshold. Any particle that is not a member of a
sub-swarm belongs to the main swarm. These sub-swarms
may merge, acquire extra particles from the main swarm or
collapse back into the main swarm. While developed for
multi-modal functions this niching behaviour could also be
used, in principle, to limit total swarm convergence. How-
ever the algorithm depends on a uniform distribution of par-
ticles in the search space, a condition that may be able to be
met after initialisation but which is not met after conver-
gence into the sub-swarms has taken place. An alternative
approach to niching is described in Bird and Li [5].

Refreshing the Best Positions. If an attraction to pbest
is being used these best positions may be updated by al-
lowing particles to replace their previous best position with
the current position periodically [10]. Choosing a suitable
period without knowledge of problem being optimised can
be problematic. If an attraction to gbest is being used
then the fitness at this position may be periodically re-
evaluated [22]. As the fitness at that point deteriorates, the
probability that it will be replaced by another position as a
result of the current fitness at that position increases. Again
a suitable re-calculation frequency has to be chosen.

Forcing Explorer Particles. The simplest approach
just requires that a number of particles be periodically
moved to randomly chosen points and have their fitness
re-evaluated [11]. Another approach organises particles in
a tree with each particle being influenced by the particle
above it (social) and itself (best position and momentum).
A particle swaps with the one above it if it out performs
it. This gives a dynamic neighbourhood that does require
extensive calculation. This has been adapted to dynamic
problems by Janson and Middendorf [23, 24]. After the
value of the best-known position (gbest) changes (it is re-
evaluated every cycle) a few sub-swarms are reinitialised
while the rest are reset (have their old personal best infor-
mation erased and replaced with the current position). The
sub-swarms then search for the new optimum. Blackwell
and Branke [7] introduce a more elaborate approach using
quantum particles. Using an analogy to quantum mechan-
ics, a particle on measurement is placed randomly within a
given radius of its net current point of attraction. A uniform
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distribution is used and a function chosen so that a finite
probability exists of a movement to a distance far from the
point of attraction.

Meeting all Three Requirements. The approaches de-
scribed above could, if used in combination, be used to
track dynamic problems. However, one further approach
(WoSP) [21] has the ability to meet all three requirements
simultaneously by altering the normal PSO requirement to
inhibit total convergence to one that reinforces the tendency
to totally converge.

The approach was originally developed to sequentially
explore an arbitrarily large number of optima. An extra
short-range force of attraction was added to the basic swarm
equation. As a result of the discrete way in which fitness
evaluations and updates to the velocity of the particles is
done, an aliasing effect causes pairs of particles to approach,
pass each other and then continue at very high velocities.
The probability that this will happen increases the closer
particle approach each other, a condition that is most likely
to be met when the swarm converges. There is no longer a
need to stop the particles fully converging. As the velocity
with which the particles leave the swarm is variable explo-
ration can continue both locally and at a distance. The total
swarm is automatically broken into a number of sub-swarms
called waves, each with its own gbest value. Particles that
leave a converging swarm as a result of this aliasing effect
leave the wave they were in and join the highest numbered
wave (creating a new one if no higher numbered wave ex-
ists). A form of evolution takes place with lower performing
waves being compulsorily recruited into better performing
higher numbered waves. Waves that run out of particles
(owing to promotion or recruitment) die out. In this way
there is a continual automatic updating of best position in-
formation available to the successive waves.

The main difference between the algorithm for static and
dynamic problems is that in the former each particle keeps
a tabu list of places that it has already explored and was
repelled from any place on its tabu list. In this way re-
exploration of any point in problem space is largely (but not
totally) eliminated. For dynamic problems this tabu list can
be completely removed on the grounds that any particular
point in problem space may be a good optimum at several
disjoined times. Alternatively extending the idea from Jan-
son and Middendorf [24], each of these previously explored
optima could be periodically re-examined and only those
points whose fitness had significantly changed are removed
from the tabu lists. It is not clear at this stage how the evo-
lutionary pressure that is an important part of WoSP would
respond to a dynamic problem.

4 Extremal Optimisation

The paradigm of self-organising criticality (SOC) [3] ex-
plains a wide range of natural dynamical systems. EO [8]
uses elements of SOC [3] by replacing the worst individ-
ual (in this case a solution component) in a population by
a random one. Over a number of iterations it is expected
that the overall solution quality will increase. The original
version mutated the worst component only. The absence of
noise made the solver very deterministic and vulnerable to
local minima. To counteract this, τ -EO was introduced. It
assigns each solution component a rank k based on its cur-
rent fitness within the solution and mutates it according to a
probability distribution of k−τ .

Only a few attempts to apply EO to dynamic problems
have been made. These use EO’s flexible solving mecha-
nism to adapt to underlying fluctuations automatically. EO
is guided only by the component fitnesses, which are asso-
ciated with the objective function. Typically EO algorithms
will incorporate subtle changes automatically, as long as
they are reflected in the amended objective function.

4.1 Benchmark Problems

Menai [27] investigates the use of EO on Incremental
Satisfiability (ISAT) problems. Two different types of dy-
namics are added to static satisfiability problems from the
SATLIB library: ISAT1 is obtained by starting from one
clause and adding the others one by one, ISAT2 divides the
same standard problems into two equal parts and solves the
first half before adding the second half of the clauses.

The performance of EO is compared with a variation of
the WalkSAT algorithm described in detail in McAllister,
Sellman and Krautz [26]. Unfortunately, the benchmark al-
gorithm (called R-Novelty) solves only case. This is some-
what surprising as the algorithm is very similar to EO and
it is equally easy to adapt to dynamics. It is likely that the
dynamics added to the problems for EO contribute to the
challenge rather than making the task easier. This is corrob-
orated by the performance of EO on a more dynamic prob-
lem (ISAT1) compared to the problem in which only one
change occurs (ISAT2). EO has a better average success
rate when solving ISAT2 and needs a similar number of it-
erations to find the solutions to ISAT2 as R-Novelty takes
to solve the static problem.

An EO has been used to solve a version of the knap-
sack problem in which there was ten different types of
changes [28, 29]. The results showed that EO will adapt
quickly to changes, provided that they are reflected in the
fitness function. Whenever the change incurs the inclu-
sion of additional components, the quality of the solution
will rise slowly. If, however, the change leads to a reduced
capacity, very good solutions are found immediately. The
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comparison with an ACS solver showed that EO cannot
compete with its precision on smaller problem sizes, es-
pecially in a static environment. As soon as the problem
size grows beyond a choice of 400 components for the next
move, EO performs better. The simplicity of EO allows it
to scale well. The computational effort shows only slightly
more than polynomial growth when the cost limit is aug-
mented.

4.2 A Defense Application

The Swedish Defense Research Agency investigates tar-
get recognition in which increasing numbers of moving sen-
sors produce reports that may or may not contain informa-
tion on the targets. Fast optimisation techniques are nec-
essary to cluster the incoming reports according to the ob-
jects, before the relevant information on target objects can
be processed by a tracker module. Svenson [32] compares
EO and τ -EO on this task, which requires the ability to in-
clude bursts of incoming reports whenever they arrive.

The experiment therein stops short of an experiment with
dynamically added reports. It only observes that EO per-
forms better with τ = 1.5 than when setting τ = ∞, and
that the pairwise comparison of a smaller subset of records
to establish the current fitness of the report within a cluster
leads to a better result than the evaluation of a larger subset
of pairs of reports.

5 Limitations

The previous sections have demonstrated that all three
algorithms have the capacity to solve dynamic optimisation
problems. This last part of this paper considers what deter-
mines the maximum rate at which changes can occur before
the algorithm performance essentially is reduced to that of
random search.

For population-based algorithms that use a history of
previous performance to guide future search, such as ACO
and PSO, the obvious limitation comes from how fast they
can learn to disregard the now irrelevant part of their history.
For population based ACO this either implies a short history
list or a method of detecting and removing all historic paths
that are no longer valid. For non-population based ACO this
will require careful handling of the evaporation to deposi-
tion ratios in the time immediately after a change has been
detected. For PSO either the gbest value needs to be peri-
odically re-evaluated and a reset of it and all lbest positions
made as soon as gbest alters or, alternatively a sequence
of gbest and lbest (or pbest) values have to be used (as in
WoSP) so that changes can be responded to without having
to be explicitly detected.

For the single individual algorithm EO there is no ex-
plicit historical information used to guide future explo-

ration1. Instead the algorithm will detect a change when
the current solution suddenly becomes invalid. The current
stored best solution then has to be cancelled and a special
repair procedure will then have to be done on the current in-
dividual. This will take a number of changes and after this
enough time must be allowed so that a good solution can be
built up.

While it is possible to describe the factors that will de-
termine the time it will take any of these algorithms to re-
spond to a change and again have a good valid solution,
the stochastic nature of the algorithms (amongst other fac-
tors) makes it impossible to quantify what this delay will be
thus allowing the maximum rate of problem change to be
specified. This limiting change rate is difficult to quantify.
However, some limiting rate must exist, albeit it problem
and algorithm dependent. Should any of these algorithms
be used on a problem changing faster that the relevant lim-
iting rate, the effect will be, that the algorithm makes too
infrequent a sampling of problem space. By analogy to the
aliasing effect seen when a digital data stream is sampled
below the Nyquest frequency when high frequencies appear
as lower frequencies, it can be predicted that the algorithms
may well present solutions to problems that, in fact, have
never been posed. There may be no clear indication that
this has most undesirable effect has occurred.

Since the limiting change rate for the three algorithms
discussed in this paper are almost certain not to be the same,
the solution may be to run two or more of the algorithms in
parallel, only accepting the solutions when they are at least
similar.
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